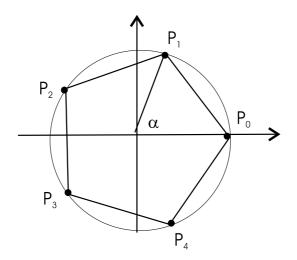


Nombre:	
Carnet:	Sección:

MA-1121-DE HONOR — Primer Parcial—

Cada ejercicio vale 10 puntos. Justifique sus afirmaciones. Se corregirá sobre 4 ejercicios elegidos por usted.


1. Sea ℓ la recta de ecuación $x+y-\sqrt{2}-2=0$ y $P_1:(1,0),\ P_2:(1,2)..$ Encuentre la (o las) ecuaciones de las circunferencias que pasan por P_1 y P_2 y son tangentes a la recta ℓ .

Sugerencia: Puede usar la fórmula de la distancia de un punto a una recta, para ayudarse.

2. Encuentre un conjunto A de números racionales tal que tenga supremo y tal que

$$\sup A = \alpha \quad \text{cumpla} \quad \alpha^2 = 2.$$

3. Considere los puntos $P_0 \dots P_4$ de la circunferencia $x^2 + y^2 = 1$, donde $P_0 = (1,0)$ y donde $P_0 \dots P_4$ son los vértices de un pentágono regular según el dibujo calcule las coordenadas cartesianas de P_1

Sugerencia: Use que

$$\cos \alpha + \cos 2\alpha + \cos 3\alpha + \cos 4\alpha + \cos 5\alpha = 0$$

(sin demostración o con demostración) y observe que algunos términos de esa suma, coinciden con otros.

4. Sea
$$f(x) = \frac{x^2 + x - 2}{x^2 + x}$$
.

Describa el dominio de f. También describa el conjunto $A = \{x | f(x) \ge 0\}$ usando intervalos.

MA-1121-DE HONOR

- 5. Sea f(x) una función definida en algún entorno reducido de x_0 . Suponga que en cada entorno reducido de x_0 , f toma algún valor positivo y algún valor negativo. Suponga además que $\lim_{x\to x_0} f(x) = L$. Demuestre que L=0.
- 6. Sea A irracional fijo. Encuentre una condición necesaria y suficiente para que la expresión $\frac{a\,A+b}{c\,A+d}$ sea un número racional suponiendo que $a,\,b,\,c,\,d$ son racionales.
- 7. Sea $f(x) = \frac{1}{x-1} + \frac{1}{x-2}$
 - i) Describa su dominio.
 - ii) Demuestre que f(x) es decreciente en $(2, +\infty)$.